skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeng, Zijian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Covariate-dependent graph learning has gained increasing interest in the graphical modeling literature for the analysis of heterogeneous data. This task, however, poses challenges to modeling, computational efficiency, and interpretability. The parameter of interest can be naturally represented as a 3-dimensional array with elements that can be grouped according to 2 directions, corresponding to node level and covariate level, respectively. In this article, we propose a novel dual group spike-and-slab prior that enables multi-level selection at covariate-level and node-level, as well as individual (local) level sparsity. We introduce a nested strategy with specific choices to address distinct challenges posed by the various grouping directions. For posterior inference, we develop a full Gibbs sampler for all parameters, which mitigates the difficulties of parameter tuning often encountered in high-dimensional graphical models and facilitates routine implementation. Through simulation studies, we demonstrate that the proposed model outperforms existing methods in its accuracy of graph recovery. We show the practical utility of our model via an application to microbiome data where we seek to better understand the interactions among microbes as well as how these are affected by relevant covariates. 
    more » « less